top of page

Jupiter: The Largest Planet in the Solar System - Features, History, Photography

Updated: May 30, 2023

At the center of the Solar System is the sun, and around it orbits 8 planets including Earth. The largest planet in our solar system is the gas giant Jupiter. Much of what we know about Jupiter is through scientific observation since its first telescopic discovery in 1610, but there is much about it that remains a mystery even after centuries.

All you need to know about the planet Jupiter

In this post, you will learn about the largest gas giant in the Solar System. Discover what Jupiter is made of, how far it is from Earth, interesting facts and stats, astrophotography and observation tips, as well as information about the Jovian missions and the Galilean Moons.


The Planet Jupiter

Jupiter is the fifth planet from the sun and is the first one you would find after traversing the Asteroid Belt in our Solar System. It is one of the Outer Planets along with Saturn, Uranus, and Neptune. All four planets are also gas giant-type planets meaning they are primarily composed of gases. Of all the planets in the Solar System, Jupiter is the largest.

Who was Jupiter Named after?

Jupiter was "discovered," on paper, in 1610 when Galileo Galilei pointed a telescope at it for the first time. However, the planet has been noticed since ancient times. Early astronomers had an affinity for naming things after popular figures of their time. It's comparable to how prominent pop culture is in our time! Many of the earliest observers of the night sky came from Italy and Greece, so you may or may not have noticed that many mythological names are used in astronomy. And, of course, the "king" and largest of all planets was named after the king of Roman gods, Jupiter.

Statue of Jupiter from the Vatican
Statue of Jupiter from the Vatican

In Roman mythology, Jupiter was said to have been a sky god. He was most recognized by the symbols of a thunderbolt and an eagle. To Romans, Jupiter was the equivalent of the Greek god, Zeus, who also wielded a thunderbolt and was the god of gods.

In Greek mythology, Zeus also went by the name Iuppiter and was brother to Neptune and Pluto - who are the Roman versions of Poseidon and Hades. All three were the kings of different worlds:

  • Zeus was the king of the Sky

  • Poseidon was the king of the Water

  • Hades was the king of the Underworld

These stories helped astronomers remember celestial objects. Jupiter was definitely a fitting name for the king of all planets.


Size and Mass

At a radius of 43,440 miles (69,911 kilometers), this gas-giant planet is 11 times wider than Earth. NASA exemplified it best by comparing its massive size to our planet noting, "If Earth were the size of a nickel, Jupiter would be about as big as a basketball." That's huge!

It goes without saying, but Jupiter's mass is also bigger than the Earth's. Using 1 Earth as a unit of measurement, it would take 318 Earths to equal the mass of Jupiter. If you were to fill up the volume of Jupiter with Earth, it would take 1,321 of them.

Fun fact: The planet Jupiter has 300 times more mass than Earth, it is less dense because of its gaseous atmosphere!

With a diameter of approximately 86,881 miles, Jupiter is about 2.5 times more massive than all the other planets in our Solar System combined. That means it has a significant gravitational influence over surrounding celestial bodies. Its powerful magnetic field, the strongest in the Solar System, creates a remarkable feature because it traps charged particles forming spectacular aurorae visible in the planet's outer atmosphere.


Distance from the Sun

Jupiter is 484 million miles away from the sun, or 778 million kilometers! In astronomical units (AU), it is located 5.2 AU from the sun. To provide context, Earth - the third planet from the sun, is 1 AU away from the sun (approximately 93 million miles or 150 million kilometers).

It takes sunlight about 8 minutes to reach the surface of Earth, but it's much longer for the fifth planet and takes... 43 minutes! It's safe to say that it's much colder there - but continue reading on to find out just how cold.

You can read our Planets in Order from the Sun guide to learn more about all planets.


Time, Rotation, and Orbit

Let's imagine that we traveled to Jupiter. What's a day like in the life of an inhabitant?


One day on Jupiter - or a Jovian day - is not the same as on Earth. Using measurements we are familiar with, one day on Jupiter is equal to 9.93 Earth hours. Needless to say, time moves fast there compared to our home planet!


Jupiter's rotation is the fastest of all the planets in the Solar System. The planet fully rotates on its axis about every 10 hours. That's about 2.5 times faster than the Earth which rotates once every 24 hours.

However, Jupiter's rotational period is not constant. Scientists have observed fluctuations in the planet's rotation, likely caused by turbulence, in its atmosphere. There are multiple cloud layers of the planet that rotate at different speeds complicating its rotational dynamics further.

Speaking of speed - Jupiter has a rapid surface speed too! If you settled yourself at the equator of the planet, you'd be moving at 22,000 mph while standing. For comparison, on the surface of Earth, we "move" at 1,000 mph while idle. If you stood up right now, it wouldn't feel like you're moving - but you are! So you can imagine how hectic it would be for an earthling on Jupiter's surface! If it has one...

Jupiter rotation compared to Earth

NASA's Scientific Visualization Studio has a great video example of how fast the planet rotates in comparison to Earth. You can see it above.

Notice how fast Jupiter rotates in comparison with the Earth!


Jupiter's orbital period is equivalent to 11.86 years! We know that a day flies by, but it takes significantly longer to complete one year. When you think about it, one year means a full orbit around the sun ending in the same position that the planet started from.

If you were a baby born on Jupiter, your first birthday (a full orbit) equates to being nearly 12 years old on Earth!

Additionally, Jupiter's orbit is elliptical meaning it is not a perfect circle, but a stretched-out oval shape. Part of the reason why is that Jupiter does not actually orbit the sun - it orbits an empty spot near the sun called the Sol-Jupiter barycenter.

This elongated orbit causes Jupiter's distance from the sun to vary significantly throughout a Jovian year. At its closest approach to the sun or its perihelion, Jupiter is about 466 million miles (750 million kilometers) away from the sun. At its furthest point, also called the aphelion, the planet is roughly 507 million miles (817 million kilometers) away.

All in all, Jupiter's time and rotation are much faster than what we're used to on Earth. While the days are shorter and the surface speed is extreme, the same cannot be said about what a year is like.12 Earth years equating to 1 Jovian year is a very long time! Although the length of a year on Jupiter might be difficult to comprehend, it's humbling to consider the rate we rotate and travel around the sun is just perfect.


Can You See Jupiter with a Telescope?

Yes, Jupiter is easy to find with a telescope and is one of the coolest planets to observe in the sky! Through an eyepiece you can see what makes Jupiter so unique, its colorful bands and the Great Red Spot, but also its bright moons! When pointing your telescope at Jupiter you might be able to make out several small, bright dots around it and those are its moons. It's so humbling to see them for the first time through a telescope.

How to Observe with a Telescope

If you are searching for a telescope to look at Jupiter but aren't sure which one to get, we have a few to recommend that'll last a lifetime! Don't fall into the traps sold by big box stores.

8" Dobsonian telescope for planets

When it comes to the best telescope to view Jupiter and other planets, we recommend an 8", 10", or 12" Dobsonian. These telescopes are built for visual astronomy and excel at viewing planets (and the moon!).

For a complete beginner, the 8" Dobsonian (like the XT8 pictured here) is the best choice as it is slightly smaller and lighter than the other two. It makes viewing planets less frustrating to set up and move around too.

Dobsonian telescopes are best used for visual observations, but with the right equipment, they can also be great for taking pictures


Can you take a Picture of Jupiter from Earth?

Aside from being one of the best planets to observe, Jupiter is also fun to photograph! Unlike the other planets, Jupiter is large and full of details that can be captured on camera.

Would you believe it if we told you that you can take pictures of Jupiter from your backyard? Or that you can take a picture of Jupiter without a telescope?

The image you see here was taken with an inexpensive older DSLR camera and a basic telephoto lens at 300mm of focal length. Sure, you cannot see details of the planet, but you can see the moons which are super cool considering this was shot without a telescope!

If you make the decision to purchase a telescope, you can improve the quality of your images and get a much more impressive result over time. The picture below was taken from our backyard in Las Vegas with a telescope. There are two ways you can take pictures of planets through a telescope:

  1. By taking individual pictures and keeping the best one (usually the easiest option and done using a DSLR or mirrorless camera)

  2. By recording a video and stacking the best frames into one image (this achieves the best results but is an advanced technique, often done with planetary-dedicated cameras)

If you purchased a telescope like the one listed above and own a DSLR or mirrorless camera, you can attach it to your telescope (the camera replaces the eyepiece) and snap away! Even without practice, you should be able to get a beautiful picture of the planet.

Picture of Jupiter with a telescope from the backyard

Want to learn all aspects of astrophotography in the most efficient way possible?

The Galactic Course is a LIFETIME membership that gives you unlimited access to all current and upcoming astrophotography content. Invest in an ever-growing library of knowledge and learn at your own pace. Make life-long friends and connections with other members, and get tips from instructors that truly care about your journey and progress under the night sky.


Jovian History

First picture of Jupiter - 1879
First picure of Jupiter - Agnes Mary Clerke - 1879

You've learned about Jupiter's stats and what a day in the life of a Jovian inhabitant would be like, so now it is time for a test of knowledge!

If it's been a while since science class, or it's your first time learning about Jupiter, you are sure to discover something new!

Read on to find out how Jupiter was formed, its age, composition, and more.

Formation and Age

Approximately 4.5 billion years ago, the Solar System came into existence with the explosive creation of the sun. After igniting, the sun expelled matter providing the right conditions for planets to take shape. It was about 3-4 million years later that Jupiter formed taking most of the mass that existed in the system.

Jupiter is thought to be the first planet formed. It's theorized that when Jupiter was forming, it may have once had a solid core which created a gravitational pull attracting nearby matter. As Jupiter gained mass, its gravity is believed to have increased intensely, collecting much of the expelled hydrogen and helium from the sun. As a result, its mass grew to more than twice the other planets' masses combined.

Can Jupiter Support Life?

No, Jupiter cannot support life. Its environment cannot sustain life as we understand it because conditions are simply too extreme. Jupiter’s temperature and atmosphere make it difficult for life to begin or acclimate to. On top of that, Jupiter is a gas giant so it would not be possible for life to thrive there.

However, that might not be the case for some of Jupiter's moons. Several of its moons are contenders, and it's believed that Europa might be the most likely candidate to sustain organisms. Water exists beneath its cold, icy surface - so the potential for life is highest on this Galilean moon!

Learn more about each of the Galilean moons further below.


Composition and Structure

What is Jupiter Made of?

We know that most of Jupiter's matter came from the sun, so it is not a surprise that it is mostly comprised of hydrogen and helium! It's theorized that Jupiter could have been a star like the sun, but the planet did not ignite. While traces of other elements, such as ammonium and methane, have been found in its outer atmosphere, they total about 5%.

Jupiter is mostly made of gas and this is much of what we see from an outside perspective. Below the atmosphere remains a mystery...

And so, curious minds wonder: what would it be like to land on Jupiter? Well... you can't.


The Planet Jupiter's Structure

The journey to Jupiter's core is different from what you would experience with Earth.

For comparison, if you were to travel to Earth's core from space, you would pass through the atmosphere, touch down on a solid surface (land) or on a liquid (water), and further past the crust and mantle, find the outer core of hot liquid magma, until you reach an intensely hot inner core of solid material.

On Jupiter, you would pass a highly volatile, reactive, and stormy outer and inner atmosphere. It would be a treacherous journey through the clouds and, if there is a surface, you would likely meet it by way of a sea of hydrogen. The sea is thought to have formed because of the atmospheric pressure and increased temperature near its core. Because of its massive size, Jupiter is thought to hold the largest ocean in the Solar System. Below that "surface," you might traverse a thick, molten center before eventually reaching its center. It is uncertain what the true center of Jupiter is like because it may or may not be the same as Earth. Therefore, landing on Jupiter is unlikely.

Jupiter's structure - NASA
Jupiter's structure - NASA

Jupiter's Core

It is hypothesized that Jupiter's center could either be a solid core or a "super-hot and dense soup," as described by NASA. We mentioned previously, that the planet Jupiter may have started out with a solid core because it formed a gravitational pull that helped it gather mass and allowed it to grow as large as it did. And, perhaps, as a result, it might have become so pressurized that the core changed form - but again, this is just conjecture. For now, its true core remains a mystery to all.

What we do know is that Jupiter has an intense magnetic field that is 16 to 54 times more powerful than Earth.

Auroras on Jupiter through X-Ray HST
Auroras on Jupiter - X-Ray Composite

Its magnetic charge goes in the same direction that the planet rotates which gives the particles in its atmosphere an electric charge, according to NASA. The charge creates radiation so strong it impacts passing spacecraft and some of Jupiter's moons. Perhaps the most beautiful outcome of such a fierce magnetic field is the aurorae found at Jupiter's poles.


What is the Surface of Jupiter Like?

Another mysterious thing about Jupiter is that we don't know what its surface looks like. We have no vision of the planet beyond the exterior of the clouds seen from Earth. Sadly, we may never know because of how extreme Jovian weather is.

However, modern technology has helped scientists study the planet in ways earlier astronomers couldn't, and they have been able to make discoveries through closer observation via better telescopes, orbiters, and space probes.


What is the Atmosphere Like?

Jupiter is classified as a gas giant for a reason - because it's full of gas! Unlike the sun, which is also full of gas and ignited, Jupiter is very cold. Its distance from our star also makes the temperature significantly colder than the Inner Planets. Jupiter's "surface" temperature is -160 degrees Fahrenheit (-110 Celcius).

Not only is the planet cold, but it's also subject to neverending stormy weather from its "surface" to the troposphere. The wind speed on Jupiter reaches more than 400 miles per hour with faster upper atmosphere winds, so it's unlikely that anything can live in or survive passing through without harm. The winds are believed to be the result of a reaction between the hydrogen and helium swirling in the atmosphere, combined with the heat emanating from the center of the planet. Jupiter's conditions are just right for creating long-lasting storms.